Aerosol lidar observations of atmospheric mixing in Los Angeles: Climatology and implications for greenhouse gas observations
نویسندگان
چکیده
Atmospheric observations of greenhouse gases provide essential information on sources and sinks of these key atmospheric constituents. To quantify fluxes from atmospheric observations, representation of transport-especially vertical mixing-is a necessity and often a source of error. We report on remotely sensed profiles of vertical aerosol distribution taken over a 2 year period in Pasadena, California. Using an automated analysis system, we estimate daytime mixing layer depth, achieving high confidence in the afternoon maximum on 51% of days with profiles from a Sigma Space Mini Micropulse LiDAR (MiniMPL) and on 36% of days with a Vaisala CL51 ceilometer. We note that considering ceilometer data on a logarithmic scale, a standard method, introduces, an offset in mixing height retrievals. The mean afternoon maximum mixing height is 770 m Above Ground Level in summer and 670 m in winter, with significant day-to-day variance (within season σ = 220m≈30%). Taking advantage of the MiniMPL's portability, we demonstrate the feasibility of measuring the detailed horizontal structure of the mixing layer by automobile. We compare our observations to planetary boundary layer (PBL) heights from sonde launches, North American regional reanalysis (NARR), and a custom Weather Research and Forecasting (WRF) model developed for greenhouse gas (GHG) monitoring in Los Angeles. NARR and WRF PBL heights at Pasadena are both systematically higher than measured, NARR by 2.5 times; these biases will cause proportional errors in GHG flux estimates using modeled transport. We discuss how sustained lidar observations can be used to reduce flux inversion error by selecting suitable analysis periods, calibrating models, or characterizing bias for correction in post processing.
منابع مشابه
Mathematical modeling of atmospheric fine particle-associated primary organic compound concentrations
An atmospheric transport model has been used to explore the relationship between source emissions and ambient air quality for individual particle phase organic compounds present in primary aerosol source emissions. An inventory of fine particulate organic compound emissions was assembled for the Los Angeles area in the year 1982. Sources characterized included noncatalystand catalyst-equipped a...
متن کاملSimulation of entrainment near a density stratified layer: Laboratory experiment and LIDAR observation
In this paper a simple qualitative model of the growth of a mixed layer adjacent to a uniform layer with a stably stratified layer is presented. The depth variations of mixed layer can be estimated from direct measurements. The Entrainment of a stably stratified layer into a turbulent mixed layer in a confined region was studied in laboratory for different Richardson numbers. The internal waves...
متن کاملObservations of Water Vapor Mixing Ratio Profile and Flux in the Tibetan Plateau Based on the Lidar Technique
As a part of the third Tibetan Plateau Experiment of Atmospheric Sciences (TIPEX III) in China, a Raman water vapor, cloud and aerosol lidar and a coherent wind lidar were operated in Naqu (31.48°N, 92.06°E) with a mean elevation of more than 4500 m above MSL in summer of 2014. During the field campaign, the water vapor mixing ratio profiles were obtained and validated by radiosonde observation...
متن کاملEstimating Urban-scale Greenhouse Gas Emissions
A compact commercial Doppler lidar has been deployed in Indianapolis for two years to measure wind profiles and mixing layer properties as part of project to improve greenhouse measurements from large area sources. The lidar uses vertical velocity variance and aerosol structure to measure mixing layer depth. Comparisons with aircraft and the NOAA HRDL lidar generally indicate good performance, ...
متن کاملMAX-DOAS O4 measurements – a new technique to derive information on atmospheric aerosols
Multi AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations of the oxygen dimer O4 are presented which can serve as a new method for the determination of atmospheric aerosol properties. Like established methods e.g. sun radiometer and LIDAR measurements MAX-DOAS O4 observations determine optical properties of aerosol under atmospheric conditions (not dried). However, the nov...
متن کامل